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ME 343: Homework Assignment 1

Total number of points = 100.

Submission instructions: submit your homework using gradescope. Please register with entry code
MPW2X3. This is required if you take this class for credit. We expect you to upload your answers as a PDF
file along with a zip file containing your code. See Homework 1 and Homework 1 Code on gradescope.

You can create the PDF using any software you want. It is possible to write your homework paper using
pen and paper, and take pictures using your phone. Make sure the lighting is sufficient. Create a single PDF
with all the pages. There are many phone apps that can do this.

Problem 1: Ridge Regression

In class, we talked about Gaussian Process Regression. In this homework, we will look into another
regression algorithm, ridge regression. Suppose we have input vectors x(i) ∈ Rd, and target variable y(i) ∈ R,
i = 1, 2, . . . , n. Ridge regression solves for θ ∈ Rd that minimizes the loss function

J(θ) =
n∑
i=1
(y(i) − θ>x(i))2 + λ‖θ‖22

where λ is a hyper-parameter that controls the weight decay or regularization. The loss function can be
conveniently rewritten in a matrix form. Define matrix X ∈ Rn×d, where the ith row in X is x(i). Let
y = [y(1), y(2), . . . , y(n)]> ∈ Rn. Then the loss function becomes:

J(θ) = ‖Xθ − y‖22 + λ‖θ‖
2
2

1. 10 points. Show that the minimizer of J(θ) is θ = (X>X + λI)−1X>y.

2. 10 points. From X>Xθ +λIθ = X>y, show that θ can be written as θ = X>α and α = (X X>+λI)−1y.
[Hint: Prove (X>X + λI)−1X> = X>(X X> + λI)−1.]

3. 10 points. Show that the inference θ>x for a new data x can be written as∑
i

αi k(x, x(i))

where k(x, x(i)) = x> x(i).

Problem 2: Kernel Methods

In the previous problem, we explored linear regression (interpolation) with ridge regression, trying to fit
the data with a line. In most cases, linear interpolation is too simple to fit the data. In order to perform
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non-linear interpolation, we can use non-linear feature functions φ(x(i)) ∈ Rm, and then perform regression
on φ(x(i)). And now the inference for a new data x becomes∑

i

αi φ
>(x) φ(x(i))

Let’s take an example in 2D with x = (x1, x2)
> ∈ R2. We may wish to find φ such that

φ>(x) φ(x(i)) = (x>x(i))2

If you expand the dot product you will see that the following function φ satisfies the equation above

φ(x) = (x1x1, x1x2, x2x1, x2x2)
> ∈ R4

The kernel trick consists in realizing that instead of using the function φ we can define a kernel function such
that

φ>(x) φ(x(i)) = k(x, x(i))

In fact, what’s special is that we can drop entirely φ(x) and use k(x, x ′) only. The definition of k(x, x ′) is the
only thing we need in our algorithm. This opens the door to many different definitions of the kernel k(x, x ′)
and kernel ridge regression schemes.

Now let’s define the concept of kernel ridge regression. We want to minimize:

J(θ) =
n∑
i=1

(
y(i) − θ>φ(x(i))

)2
+ λ ‖θ‖22

where φ(x(i)) maps x(i) to Rm. The inference on new data x is
n∑
i=1

αi φ
>(x) φ(x(i)) =

n∑
i=1

αik(x, x(i))

where α = (λI + K)−1y and K ∈ Rn×n is the kernel matrix of the observation data: Ki j = k(x(i), x(j)), for
i, j = 1, . . . , n. In this problem, we will explore different types of kernel for kernel ridge regression.

We assume that you will write Python code for the homework using a Jupyter Notebook. That’s the
easiest way to write Python code and visualize results immediately. For more information see for example:
https://jupyter.org/install. You can do your homeworkwith other languages such asMatlab or Julia. However,
the solution set will be written in Python. Later on this quarter, we will learn about TensorFlow and Keras,
which is an API for TensorFlow written in Python.

1. 15 points. Implement the Gaussian or “RBF” kernel

kRBF(σ)(x, x ′) = exp
(
−
‖x − x ′‖2

2σ2

)
and the polynomial kernel

kpoly(a,d)(x, x ′) = (a + x>x ′)d

in a Jupyter Notebook. The kernel functions in Python should take X ∈ Rn1×d, X ′ ∈ Rn2×d and
relevant parameters as input, and return a matrix M ∈ Rn1×n2 where

Mi j = k(X ′i,:, Xj,:)
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The linear kernel
klinear(x, x ′) = x>x ′

has been implemented for you as an example. Attach your code for these two functions in the
submission. [You may find the scipy function cdist(X1,X2,’sqeuclidean’) in the package
scipy.spatial.distance useful. It computes the squared Euclidean distance ‖u − v‖22 between
the vectors u and v.]

2. Suppose we have the data set (observations) D = {(−4, 2), (−1, 0), (0, 3), (2, 5)}. As we have seen
previously, the solution will be of the form:

4∑
i=1

αi k(x, x(i))

So the solution is a linear combination of k(x, x(i)) with the points x(i) being {x(i)} = {−4,−1, 0, 2}.

(a) 5 points. Plot the four functions x 7→ kpoly(1,3)(x, x(i)) with x(i) ∈ {−4,−1, 0, 2} and for x ∈
[−6, 6]. The definition of kpoly(1,3) is given above.

(b) 5 points. Similarly, plot the four functions x 7→ kRBF(1)(x, x(i)) with the same x(i) and interval
for x. RBF(1) means the RBF kernel above with σ = 1.

The plot for linear kernel has been generated for you as an example.

Now consider a one-dimensional regression problem, where x(i) ∈ R. We’ll fit this data using kernel ridge
regression, and we’ll compare the results using several different kernel functions. Because the input space is
one-dimensional, we can easily visualize the results. In the zip file for this assignment, you’ll find a training
and test set, krr-train.txt and krr-test.txt. The data has been loaded for you. In machine learning,
a training set is a dataset used to train a model, i.e., the observations. And after the learning is done, the
trained model is evaluated on the test set. In our case the evaluation metrics is the average square loss and it
has been implemented for you. See the instance function score in the class KernelRidgeRegression.

3. 15 points. Implement the function predict in Kernel_Learning class, and the function
train_kernel_ridge_regression. In order to make it flexible to use different kernels, we use the
sklearn wrapper for our kernel ridge regression. Attach your code of the instance function predict
and the function train_kernel_ridge_regression in the submission. [sklearn is a powerfulmachine
learning library for Python, built on NumPy, SciPy, and matplotlib.]

4. 10 points. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
regularization parameter of 0.0001 for 3 different values of sigma: 0.01, 0.1, and 1.0. What values of
σ do you think would be more likely to overfit, and which less?

5. 10 points. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
σ of 0.02 and 4 different values of the regularization parameter λ: 0.0001, 0.01, 0.1, and 2.0. What
happens to the prediction function as λ→∞?

6. 10 points. Find the hyperparameter settings (including kernel parameters and the regularization
parameter λ) for the Gaussian kernel and the polynomial kernel that give a low average square loss on
the test set. Report the average square error on the test set and the ideal hyperparameter combination
for each kernel. Plot the prediction on the test set. For the RBF kernel, the average square error given
by score on the test set should be lower than 0.015, and for the polynomial kernel, it should be lower
than 0.035.
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