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ME 343: Homework Assignment 2

Total number of points = 100.

Submission instructions: submit your homework using gradescope. We expect you to upload your answers
as a PDF file along with a zip file containing your code. See Homework 2 and Homework 2 Code on gradescope.

You can create the PDF using any software you want. It is possible to write your homework paper using
pen and paper, and take pictures using your phone. Make sure the lighting is sufficient. Create a single PDF
with all the pages.

You will find the starter code and required files at this URL:
https://drive.google.com/file/d/1vkhhMINOcTGENYONZrxDAAme16qWYFGv/view?usp=sharing

The size of the file is 76 MB/[]

Problem 1: Building a simple two-layer neural network

In this problem, you will build your first neural network for a 2-class classification problem. Your network
will have an input layer, one hidden layer, and an output layer. You will compare the performance of your
neural network with that of logistic regression and you will also learn how to select the hyper-parameters for
your network.

1. Logistic regression 5 points

Logistic regression is one of the most popular machine learning algorithms for binary classification.
It is a simple algorithm that performs very well on a wide range of problems. Please refer to the
following tutorial on logistic regression

https://www.datacamp.com/community/tutorials/understanding-logistic-regression-python

Use the helper function provided to you to load the training data and train a logistic regression model.
Plot the decision boundary and discuss the results.

2. NN: initializing parameters 5 points

Complete the “model-parameter-init()” function to initialize the weighting parameters. How do you
initialize W; and W, parameters? Why?

3. Forward and Backward passes 10 points

Complete the “feed-forward()” and “backprop()” functions for a two-layer neural network with one
hidden layer. You have the freedom to select the activation function (nonlinear function) for the
hidden layer but you have to select the right type of activation function for the output layer based on
the objective of the problem. The type of the activation function will affect your back-propagation
function as the gradient formula will change. Note that we used cross-entropy as the cost function
here.

IPlease email darve@stanford.edu if the link does not work.


https://www.gradescope.com/courses/35330
https://drive.google.com/file/d/1vkhhMIN0cTG6nYONZrxDAAme16qWYFGv/view?usp=sharing
https://www.datacamp.com/community/tutorials/understanding-logistic-regression-python
darve@stanford.edu

4. Training the network 10 points

Now that you have all the required function, you can train the network. Complete the “train()” function
first, then load the data and train the network for 1000 epochs. Use the default values given in the train
function for training the network. Use the “plot-decision-boundary()” function to plot the separating
line and discuss the results.

5. Comparing neural network with logistic regression 5 points

Plot the results for your neural network for the cases with 2, 5, 10, and 20 hidden units. Compare the
results with the result of logistic regression and discuss your findings.

Problem 2: Inverse modeling

In this problem, you are going to perform inverse modeling to estimate the depth of water bodies from
noisy flow velocity measurements using deep learning techniques. Given the depth of a river, the surface
flow velocity can be computed by using physical models of the form v = f(h)+ € where v is the flow velocity
profile, & is the depth of river, and € is the noise in the system due to inaccuracy of measurement devices and
the simplification assumptions made to obtain the physical model. However, in most real-world applications,
we are given the flow velocity profiles and the goal is to estimate the depth of the river using these velocity
measurements. There are several inverse modeling techniques such as geostatistical approach or Kalman
filtering techniques to solve this problem. However, these methods can be computationally expensive for
online application. Here, you will learn to apply fully connected deep neural network to estimate the depth
of a river using its corresponding velocity measurements.

In order to simplify the problem, you only need to estimate the depth profile for a small segment of the river
profile. Also, in order to reduce the dimension of the problem, the riverbed profiles are projected to their
first k£ important eigenvectors. Note that the first k important eigenvectors of a matrix, are the eigenvectors
that correspond to the k largest eigenvalues of the matrix. Therefore, the input vector (x) of your network
is the flow velocity measurements for each segment and the output of your network (y) would be a vector
with k elements that corresponds to the k largest eigenvalues. Note that the data are preprocessed and the
matrix X in the dataset corresponds to the flow velocity measurements for each segment and the matrix Y
corresponds to the first k eigenvalues for each riverbed profile.

1. Constructing the model 10 points

Complete the “generate-model()” function in the starter code. For simplicity, the number of layers
and number of hidden units are given as a list to the function. Use the same parameters (activation
function, regularization coefficient, . . . ) for all the layers except the last layer. What type of activation
function do you use for the last layer? Why? Explain what type of loss function and evaluation metrics
you selected and provide the reasoning. Consider adding batch normalization layers to your network
structure.

2. Training the network 10 points

Complete the “train()” function and then set up your network parameters and train your network.
You need to select the network parameters such as the number of layers, the number of hidden units,
regularization parameters, etc. Use 80% of the data for the training set and 20% for the validation set.
What is the number of epochs that you selected? Why? Plot the loss function for the training set and
the validation set.



Figure 1: DCGAN network structure

3. Hyper-parameter selection 10 points

In this section, you will learn how to select hyper-parameters. For simplicity, we try to find only two
hyper-parameters which are regularization coefficient and learning rate decay. Here, we only run the
network for 10 epochs to get results faster. Complete the “hyp-tuning()” function and call the function.
Report the optimal values for the regularization coeflicient and learning rate decay.

4. Plotting results 5 points

Train your network for the optimal hyper-parameters that you found in the previous section and use
the “plot-result()” function that is provided to you to load the test dataset and plot the results.

Problem 3: Deep Convolutional GAN (DCGAN)

In this problem, you’ll get hands-on experience coding and training GANs. Here, we will implement
a specific type of GAN designed to process images, called a Deep Convolutional GAN (DCGAN). We'll
train the DCGAN using the MNIST dataset to generate numbers from samples of random noise. You’ll gain
experience implementing GANs by writing code for the generator, discriminator, and training loop, for each
model.

DCGAN is a GAN method that uses a convolutional neural network as the discriminator and a network
composed of transposed convolutions as the generator. The transposed convolution layer acts in the “opposite”
direction of a normal convolution, i.e., from something that has the shape of the output of some convolution
to something that has the shape of its input. You can refer to Keras documentation| to learn more about
transposed convolution layer and its implementation in keras.

To implement the DCGAN, we need to specify three things: (1) the generator, (2) the discriminator, and
(3) the training procedure. We will develop each of these three components in the following subsections.

1. Discriminator 10 points

In the code given to you, at each convolution layer of the discriminator, we downsample the spatial
dimension of the input volume by a factor of two and we use a kernel size k = 5. Follow the instruction
provided in the discriminator function to implement the discriminator part of the network. Discuss
how the discriminator network works.


https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2DTranspose

2. Generator 10 points

Now, we will implement the generator of the DCGAN, which consists of a sequence of the transpose
convolutional layers that progressively up-sample the input noise sample to generate a fake image.

Follow the instructions provided in the generator function to implement the generator part of the
network. Discuss why we need to use transpose convolution layers in the generator.
3. Training 10 points

In order to simplify the problem for you, the training function is provided for you. Your task in this
section is to explain this function in the write-up. How does the network learn to generate meaningful
images? What happens at each iterations step of the for loop?

Load the MNIST dataset and train your DCGAN network. Run the “gen-result()” function to generate
images. Discuss the results and suggest how we can improve the network performance.



