
Machine Learning for Mechanical Engineering, ME 343
Gradey Wang, Eric Darve
Winter 2019

ME 343: Homework Assignment 3

Total number of points = 100.

Submission instructions: submit your homework using gradescope. We expect you to upload your answers
as a PDF file along with a zip file containing your code. See Homework 3 and Homework 3 Code on gradescope.

You can create the PDF using any software you want. It is possible to write your homework paper using
pen and paper, and take pictures using your phone. Make sure the lighting is sufficient. Create a single PDF
with all the pages.

In this homework we are going to investigate algorithms for the bandit problem. The one armed bandit is
a slot machine that you operate by pulling a long handle on its side. It’s commonly found in casinos. After
pulling, you may get a random reward. The multi-armed bandit problem is a classical reinforcement learning
algorithm.

Imagine you have a row of one armed bandits. You start pulling the arms and look at the rewards you
get. Each slot machine has different settings and some will give back larger rewards than others. The goal
is then to figure out an algorithm that allows you to maximize your reward. Ideally, you would pull the arm
of the bandit that gives you back the largest average reward. However, the challenge is that you do not know
ahead of time which bandit has the best rewards. So you need to first explore a few bandits and based on
some initial sampling try to determine which bandit is the most profitable. This is the problem solved by the
UCB1 algorithm.

The UCB1 algorithm is presented in this paper:
https://link.springer.com/content/pdf/10.1023/A:1013689704352.pdf

An important theoretical measure of how good your algorithm is is the regret:

µ∗n −
K∑
j=1

µjE[Tj(n)]

where µj is the expectation for the reward of bandit j, and µ∗ is the largest reward (the one armed bandit
we want to play the most); n is the number of times we have played; and Tj(n) is the number of times the
one-armed bandit j has been played.

So ideally Tj(n) = 0 unless j is the best one armed bandit in which case we want Tj(n) = n. Since

K∑
j=1
E[Tj(n)] = E

[K∑
j=1

Tj(n)
]
= E[n] = n

we have:

µ∗n −
K∑
j=1

µjE[Tj(n)] =
K∑
j=1
(µ∗ − µj)E[Tj(n)] ≥ 0

1

https://www.gradescope.com/courses/35330
https://link.springer.com/content/pdf/10.1023/A:1013689704352.pdf

and equality with 0 is achieved with the optimal (but generally un-achievable) optimal strategy or policy
where we simply play µ∗ all the time.

So the regret is always a positive quantity and equals 0 if we play systematically the best one armed bandit
(with the largest µj). One can derive theoretical lower bounds on the regret and show that it is bounded from
below byΩ(

√
Kn) (K is the number of bandits) for all algorithms or policies (where of course we assume the

best bandit is not known by the algorithm when it starts). The UCB1 algorithm is one of the most popular
algorithms and guarantees an upper bound on the regret of the form O(

√
Kn ln n), which is quite good!1

The UCB1 algorithm is as follows:

Algorithm 1 UCB1
Play each of the K one-armed bandits once, giving initial values for empirical mean payoffs µi for bandit i
for each round t = K + 1, K + 2, . . . , do

Let ni represent the number of times bandit i was played so far.
Play bandit i maximizing µi +

√
2 log n/ni.

Observe the reward Ri,n and update the empirical mean µi for the chosen bandit i.

We can analyze the algorithm intuitively as follows (this is not a rigorous derivation but it captures the
essential features of what is happening). Denote

∆i = µ
∗ − µi

This is the difference between the largest reward and reward i. If we play for a long time, we can expect
µi ∼ µi. Assume for a moment that the algorithm is not working and we are sampling the K bandits
uniformly. Then

log n
nj
∼

log n
n/K

→ 0

Now consider

argmaxj µj +

√
2

log n
nj

If the last term is small, we must pick j = j∗ (the arm with best reward). But if we keep playing j = j∗,
log n/nj must increase (n increases and nj is fixed). So, at some point√

2
log n

nj
= ∆j

When this happens the algorithm will pick j instead of the best arm j∗ because

µj +
√

2 log n/nj = µj + ∆j ∼ µ
∗

So roughly the algorithm is such that we play the best arm j∗ about n times, and the other sub-optimal arms
about

E[Tj(n)] ∼ 2
log n
∆2
j

1The lower bound means that given a policy there is at least one multi-armed bandit problem for which the regret is larger than
the lower bound. The upper bound means that the regret is lower than the bound for all multi-armed bandit problems.

2

In the paper, the following bound is proved

E[Tj(n)] ≤ 8
log n
∆2
j

This algorithm is very efficient because it combines two powerful ideas:

1. Exploitation. The best arm is sampled nearly n times which is optimal.

2. Exploration. All other arms are sampled infinitely (log n→∞) although log n is still small compared
to n so that we are minimizing the regret. The fact that we sample all arms at least log n times is
critical however. Assume for example that we sample j∗ (best arm) a few times but get unlucky and
obtain only very small rewards. We may be tempted to just drop that bandit. But of course this is an
error. In our algorithm however, since all bandits are sampled an infinite number of times, µj must
eventually converge to µj . So this algorithm cannot possibly miss the best bandit. When it discovers
j∗, it will start sampling that bandit and eventually E[Tj∗(n)] ∼ n, thereby leading to a small regret.

Problem 1: UCB1

We first ask you to explore UCB1 numerically and observe whether your results agree with the theory.

We first consider 5 bandits (K = 5). We consider the following cases:

(a) The rewards are normally distributed according to N1(1,0.2), N2(0.3,0.2), N3(−1,0.2), N4(0.5,0.2),
N5(0.8,0.2), for each bandit.

(b) The rewards according to N1(1,5), N2(0.3,5), N3(−1,5), N4(0.5,5), N5(0.8,5)

(c) The rewards are bimodally distributed according to:

R1 ∼

{
N(20/9,0.2), with probability 0.9
N(−10,0.1), with probability 0.1

R2 ∼

{
N(13/9,0.2), with probability 0.9
N(−10,0.1), with probability 0.1

R3 ∼

{
N(0,0.2), with probability 0.9
N(−10,0.1), with probability 0.1

R4 ∼

{
N(5/3,0.2), with probability 0.9
N(−10,0.1), with probability 0.1

R4 ∼

{
N(2,0.2), with probability 0.9
N(−10,0.1), with probability 0.1

Be careful that owing to the random nature of the reward sampling, you may get different results as you rerun
your code. You may want to explore these different realizations and comment as appropriate.

This Python code may be copy/pasted if you want to avoid a typo:

3

https://link.springer.com/content/pdf/10.1023/A:1013689704352.pdf

d_params = \
[[20/9, .2, -10, .1], # mu1 , std1 , mu2 , std2
[13/9, .2, -10, .1],
[0, .2, -10, .1],
[5/3, .2, -10, .1],
[2, .2, -10, .1]]

In each of the cases:

1. 10 points. Plot the proportion of visits of bandits {1,2, . . . ,5} vs. number of rounds,

2. 5 points. Plot the achieved reward vs. number of rounds,

3. 10 points. Comment on your results. What does the theory predict? Does it agree with your empirical
findings?

Problem 2: Tree search

You are now going to work on implementing a Monte Carlo Tree Search using UCT, which is a version of
UCB1 for tree searches. Basically, we go down the tree starting from the root. At each node we consider the
list of children nodes. We look at each child node as a one-arm bandit and use UCB1 to select a node. Then
we traverse the tree down following that node until we reach a leaf and evaluate its reward. The leaf reward
must then be back-propagated up the root of the tree. This means that the average reward for a given node o
in the tree is the average of all the sampled rewards for leaf nodes that are descendants of o. As before we
try to identify the leaf node that has the largest reward on average.

The theoretical analysis of the rewards at each tree node is a bit more complicated than previously because
as the UCT algorithm evolves we sample the children differently. This implies that the probability distribution
of the rewards for a node o is not constant but in effect changes as we vary our strategy for sampling leaf nodes.
However, as we converge, we should start sampling the node with the largest reward, so that asymptotically
the probability distribution of rewards for a given tree node should converge to the probability distribution
of its descendant leaf with the largest reward.

The UCT algorithm can be summarized as follows:

(a) At each level of the tree, choose the following bandit (tree node)

a = argmaxj µj +
√

2 ln n/nj

where the notation is as before and take ln 0/0 = ∞.

(b) Back-propagate the sampled reward of the leaf node up the tree, from the leaf node to the root node.

We consider a tree with 2 levels. Each tree node has 5 children nodes. There are 25 leaf nodes. The
reward of each node i ∈ {1,2, . . . ,25} is normally distributed according to

N
(
tanh

(
(i − 13)/5

)
, 0.1

)
1. 10 points. Plot the proportion of visits of nodes {1,2, . . . ,25} vs. number of actions taken,

4

http://ggp.stanford.edu/readings/uct.pdf

2. 5 points. Plot the proportion of visits to level 1 nodes {A,B, . . . ,E} (these are the 5 nodes directly
below the root) vs. number of actions taken,

3. 10 points. Plot the average reward of nodes {A,B, . . . ,E} vs. number of actions taken, and

4. 10 points. Plot the value of the root node vs. the number of actions taken. In (1), be sure to label the
curve corresponding to the node with the highest mean.

5. 10 points. Comment on your results. What does the theory predict? Does it agree with your empirical
findings?

Problem 3: Comparison of UCT and UCB1

We want to evaluate whether UCT is advantageous. The idea is to compare UCT where we have a depth-2
tree with UCB1. For this, we take the setup from Problem 2. You should reuse your results from Problem 2
using UCT.

Consider now all the leaves from 1 to 25. We can apply UCB1 directly to all these leaves. This is like
“flattening” the tree. We lose the hierarchical structure that was provided by the 2-level tree. Does this make
any difference?

Implement UCB1 for this tree with 25 leaf nodes. Then answer the following questions:

1. 10 points. Plot the proportion of visits of nodes {1,2, . . . ,25} vs. number of actions taken, and

2. 10 points. Plot the value of the root node vs. the number of actions taken.

3. 10 points. Qualitatively describe whether UCT or UCB1 is faster than the other. What are your
findings? Can you provide an explanation for your observations?

5

